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Unified algebraic Bethe ansatz for two-dimensional lattice models
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We develop a unified formulation of the quantum inverse scattering method for lattice vertex models
associated to the nonexceptionalA2r

(2) , A2r 21
(2) , Br

(1) , Cr
(1) , Dr 11

(1) , and Dr 11
(2) Lie algebras. We recast the

Yang-Baxter algebra in terms of different commutation relations between creation, annihilation, and diagonal
fields. The solution of theDr 11

(2) model is based on an interesting 16-vertex model, which is solvable without
recourse to a Bethe ansatz.@S1063-651X~99!07106-8#

PACS number~s!: 05.501q, 64.60.Cn, 75.10.Hk, 75.10.Jm
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One of the main branches of theoretical and mathema
physics is the theory of exactly solvable models. The m
successful approach to construct integrable two-dimensi
lattice models of statistical mechanics is by solving the c
ebrated Yang-Baxter equation@1#. Given a solution of this
equation, depending on a continuous parameterl, one can
define the local Boltzmann weights of a commuting fam
of transfer matricesT(l). A complete understanding o
these models should of course, include the exact diago
ization of the transfer matrices, which can provide us w
nonperturbative information about the on-shell physi
properties such as free-energy thermodynamics and quas
ticle excitation behavior.

The structure of the solutions of the Yang-Baxter equat
based on simple Lie algebras is by now fairly well und
stood @2#. In particular, explicit expressions for th
R-matrices related to nonexceptional affine Lie algebras w
exhibited in Ref.@3#. Since then, many otherR matrices as-
sociated to higher dimensional representations of these a
bras have also been determined@4#. A long-standing open
problem in this field, except for theAr

(1) algebra@5#, is the
diagonalization of their transfer matrices by a first princip
approach, i.e., through the quantum inverse scatte
method @6,7#. This technique gives us information on th
nature of the eigenvectors, which is crucial in the investi
tion of the off-shell properties such as correlators of phy
cally relevant operators@8#. This fact becomes even mor
clear thanks to new, recent developments in the calcula
of form-factors for integrable models in a finite lattice@9,10#.

In this work, we offer the basic tools to solve the rema
ing vertex models based on the nonexceptional Lie alge
within the quantum inverse scattering framework. Spec
cally, we present a universal formula for the eigenvectors
terms of the creation fields and the fundamentalR-matrix
elements of theA2r

(2) , A2r 11
(2) , Br

(1) , Cr
(1) , Dr 11

(1) , andDr 11
(2)

models. This general construction extends previous work
the author and Ramos@11# and it is crucial in order to ac
commodate the solution of the twistedDr 11

(2) model. It turns
out that this solution still depends on the diagonalization o
16-vertex model having fine-tuned Boltzmann weights. Int
esting enough, this latter problem is resolved without
course to a lattice Bethe ansatz.

One basic object in the quantum inverse scatter
method is the monodromy operatorT~l! whose trace over an
PRE 591063-651X/99/59~6!/7220~4!/$15.00
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auxiliary spaceA gives us the transfer matrix,T(l)
5TrA@T(l)#. A sufficient condition for integrability is the
existence of an invertible matrixR(l,m) satisfying the fol-
lowing relation

R~l,m!T~l! ^T~m!5T~m! ^T~l!R~l,m!, ~1!

where the matrix elementsRa1 ,a2

b1 ,b2(l,m) of the R matrix de-

fined on the tensor spaceA^A arec numbers. For the mod
els we are going to discuss in this paper, theR matrix de-
pends only on the difference of the rapiditiesl andm.

As a first step in this program, one may try to constru
from the intertwining relation~1! convenient commutation
rules for the matrix elements of the monodromy matr
which in turn can inspire us about the physical content
such elements. There is no known recipe to perform t
task, but it certainly begins with an appropriate represen
tion for T~l! itself. An important input is the reference sta
u0& one uses to build up the eigenvectors of the transfer
trix T(l). If we chooseu0& as the highest weight state fo
these algebras we soon realize, from the properties
T~l!u0&, that a promising ansatz for the monodromy shou
be @11#

T~l!5S B~l!

CW * ~l!

C~l!

BW ~l!

Â~l!

CW ~l!

F~l!

BW * ~l!

D~l!
D . ~2!

Here the vectorBW (l) and the scalar fieldF(l) will play
the role of creation operators with respect to the refere
stateu0&. The fieldBW (l) is a (q22)-componentrow vector,
where q is the number of states per bond of these ver
models in a square lattice. Its relation to the rank of ea
nonexceptional Lie algebra discussed in this paper is give
Table I. The operatorBW * (l) represents (q22)-component
columnvector operator, playing the role as a redundant c
ation field, and therefore does not enter in our construction
the eigenvectors. The scalar fieldC~l!, the column and row
vectorsCW * (l) andCW (l) are annihilation operators,Â(l) is
a (q22)3(q22) matrix operator, while the remainin
fields B(l) andD(l) are diagonal scalar operators. Puttin
them together, we have a rather specificq3q matrix repre-
sentation for the monodromy matrix.
7220 ©1999 The American Physical Society



he
a-
io
th
d
o

o

ca

e

t
b
e

er

en

b
or

sa

-

tity
,
bi-

the

-
en

he
ter-

der

est
pa-
of

t of
ll

th
in

PRE 59 7221BRIEF REPORTS
Taking into account this discussion and following t
steps of Ref.@11# one can find the appropriate set of fund
mental commutation rules between the creation, annihilat
and diagonal fields. However, in order to accommodate
solution of theDr 11

(2) vertex model, we lead to generalize
expressions for the commutation rules as compared to th
exhibited in Ref.@11#. For the sake of simplicity we illustrate
these modifications only in the simplest case. This turns
to be the commutation rule between the fieldsB(l) and
BW (l), which is given by

B~l!BW ~m!5w1~m2l!BW ~m!B~l!2ĥ~m2l!•BW ~l!B~m!.
~3!

For theDr 11
2 modelĥ(l,m) is the following matrix Bolt-

zmann weight:

ĥ~x!5S Î w2~x!

0
0
0

0
w3

2~x!

w3
1~x!

0

0
w3

1~x!

w3
2~x!

0

0
0
0

Î w2~x!

D , ~4!

while for the other nonexceptional Lie algebras is just a s
lar ĥ(x)5w2(x). The operator Î denotes the (q/222)
3(q/222) identity matrix, and the expressions for th
weightswi(x) are

w1~x!5
exp~ax!2k2

k@exp~ax!21#
,

w2~x!5
12k2

k@exp~ax!21#
, ~5!

w3
6~x!5

k221

2k@16exp~ax/2!#
,

where a52 for the Dr 11
(2) model anda51 for the other

nonexceptional Lie algebras listed in Table I. The parame
k describes the ‘‘quantum’’ deformation as defined by Jim
@3#. We remark that many other commutation rules ne
similar modifications, but since they are sufficiently cumb
some we shall present these technical details elsewhere@12#.

We next turn to the analysis of the structure of the eig
vectors. These are multiparticle states characterized by a
of rapidities that parametrize the creation fields, and can
written as linear combination of products of the operat
BW (l) andF(l) acting on the reference stateu0&. The follow-
ing physical picture helps us to construct an educated an

TABLE I. Parameters of the vertex models associated with
affine Lie algebras. The symbols IK and FZ stand for Izerg
Korepin @15# and Fateev-Zamolodchikov models@14#, respectively.

Lie algebra q r̂ (1) matrix

A2r
(2) 2r 11 19-vertex IK model

A2r 21
(2) andCr

(1) 2r six-vertex model

Br
(1) 2r 11 19-vertex FZ model

Dr 11
(1) 2r 12 two decoupled six-vertex models

Dr 11
(2) 2r 12 16-vertex model
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for such multiparticle states. The fieldBW (l) plays the role of
a single particle excitation, whileF(l) describes a pair ex
citation, both with bare momenta parametrized byl. Further-
more, the total number of particles is a conserved quan
thanks to an underlyingU(1) invariance. Consequently
BW (l1) will represent the one-particle state, the linear com
nation BW (l1) ^ BW (l2)1vW (l1 ,l2)F(l1) will be the two-
particle state for some unknown vectorvW (l1 ,l2), and so
forth. Adapting the steps of Ref.@11# to include theDr 11

(2)

structure, we find after a tedious computation that
n-particle eigenvectoruFn(l1 ,...,ln)& can be written by the
linear combination

uFn~l1 ,...,ln!&5FW n~l1 ,...,ln!•FW u0&, ~6!

where the (q22)n components of the vectorFW describe the
linear combination and the vectorFW n(l1 ,...,ln) satisfies the
following recurrence relation:

FW n~l1 ,...,ln!5BW ~l1! ^ FW n21~l2 ,...,ln!

2(
j 52

n

jW~l12l j ! )
k52,kÞ j

n

w1~lk2l j !F~l1!

^ FW n22~l2 ,...,l j 21 ,l j 11 ,...,ln!B~l j !

3)
k52

j 21

r̂ k,k11~lk2l j !. ~7!

In this formula, the vectorjW (x) plays the role of a gener
alized exclusion principle, projecting out certain forbidd
states that were made by the creation fieldsBW (l i) from the
linear combination. This exclusion rule is governed by t
non-null components of this vector, which have been de
mined in terms of the originalR-matrix elements by

jW~x!5 (
i , j 51

q22 R1q
i 11,j 11~x!

R1q
q1~x!

êi ^ êj , ~8!

whereêi denotes the elementary projection on thei th posi-
tion.

The meaning of the auxiliaryR-matrix r̂ (x) in expression
~7! is that it dictates the symmetry of the eigenvectors un
permutation of rapidities, namely,

FW n~l1 ,...,l j ,l j 11 ,...,ln!

5FW n~l1 ,...,l j 11 ,l j ,...,ln!• r̂ j , j 11~l j2l j 11!. ~9!

As long asr .2, the structure of the matrixr̂ (x) is based
on the same Lie algebra as the originalR matrix we started
with, but now having a lower level rankr 21. This structure,
however, can change drastically when we reach the low
level, and for this reason it is convenient to call them se
rately by r̂ (1)(x) matrices. In Table I we describe the type
vertex models that are associated to theser̂ (1) matrices for
each nonexceptional Lie algebra. We note that for mos
the models the underlyingr̂ (1) matrices are based on the we
known six- @13,6# and 19-vertex models@14,15#. The

e
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Dr 11
(2) model is, however, an exception, and its fundamen

r̂ (1) matrix is given by a rather peculiar 16-vertex mod
Since this result seems to be absent in the literature, we s
present here details about this theory, beginning with its m
trix form

r̂ D
2
2

~1!
~x!5S a1~x,k!

b~k!

b~k!

c~k!

2b~k!

2c~k!

a2~x,k!

2b~k!

2b~k!

a2~x,k!

2c~k!

2b~k!

c~k!

b~k!

b~k!

a1~x,k!

D ,

~10!

where the Boltzmann weightsa6(x,k), b(k), andc(k) are
given by

a6~x,k!5 f 6~k!1g~x!, c~k!5
2b2~k!

f 1~k!2 f 2~k!
.

~11!

This matrix is factorizable for arbitrary functionsf 6(k)
andg(x), but in the specific case of theDr 11

(2) model we have
the following extra constraints:

g~x!5sinh~x!, f 1~k!52 f 2~k!,
~12!

f 1~k!5c~k!6~k21/k!/2.

To make further progress for the algebraic Bethe ans
solution of theDr 11

(2) it is necessary to diagonalize the aux
iary transfer matrix associated to ther̂ (1)-matrix ~10! in the
presence of inhomogeneities. More precisely, we have
tackle the following eigenvalue problem:

r̂ ~1!~l2m1!b1d1

c1a1 r̂ ~1!~l2m2!b2c2

d1a2
¯ r̂ ~1!

3~l2mn!bnc1

dn21anFan¯a15LD
2
2

~1!
~l,$m j%!Fbn¯b1, ~13!

where$m j% stands for the inhomogeneities.
We solve this problem by first mapping the 16-vert

model to an asymmetric eight-vertex model, following a p
cedure devised long ago by Wu@16#. This leads us to a much
simpler vertex model, having the followingR matrix:

r̂ 8v
~1!~x!5S ã~x!

0
0

d̃2~k!

0
c̃~k!

ã~k!

0

0
ã~x!

c̃~k!

0

d̃1~k!

0
0

ã~x!

D , ~14!

where the respective weights are given by

ã~x!5sinh~x!, c̃~k!5 f 1~k!2b2~k!/ f 1~k!,
~15!

d̃6~k!5 f 1~k!1b2~k!/ f 1~k!62b~k!.

The Boltzmann weights of this eight-vertex model ha
enough special properties to allow us exact diagonaliza
without the need of a Bethe ansatz analysis. In fact, the
diagonal matrix component of the corresponding Lax ope
tor commutes due to the relationd1(k)d2(k)5c2(k), which
l
.
all
a-

tz

to

-

n
f-
-

is also a restriction for factorization of ther-matrix ~14!. This
leads us to conclude that all the eigenvectors are given
terms of products of on site states, and its expression in
spin-12 sz basis is

FW 8v5 )
e i561

)
i 51

m

^S 1

e iA c̃~k!

d̃1~k!
D , ~16!

wheree i561 areZ2 variables, parametrizing the many po
sible (2)m states. The expression for the eigenstates of
original 16-vertex model can be obtained from Eq.~16! after
a transformation to the representation wheresx is diagonal.
It is interesting to note that these are typical variation
states, with the advantage of being exact and valid for
role spectrum.

Now the eigenvalues can be determined almost direc
and they are given by

LD
2
2

~1!
~l,$m j%!5)

i 51

m

@sinh~l2m i !2e i~k21/k!/2#

1)
i 51

m

@sinh~l2m i !1e i~k21/k!/2#.

~17!

These latter results are fundamental in order to solve
eigenvalue problem for theDr 11

(2) from first principles. In
particular, the fact that the eigenvectors do not depend on
rapidities is an essential feature to match the inhomogene
eigenvalue and nested Bethe ansatz problems, since ther̂ (1)

matrix cannot be made regular. It should be also emphas
that this theory is not in the class of the so-called fre
fermion models.

In summary, we have developed a framework that is
pable of dealing with the transfer matrix eigenvalue probl
of the vertex models based on nonexceptional Lie algeb
from a unified point of view. Our nested Bethe ansatz res
for the eigenvalues and Bethe ansatz equations corrobo
those conjectured in Ref.@17# by means of analyticity as
sumptions. The many technical details of such nested Be
ansatz analysis will be presented elsewhere@12#. The univer-
sal formula we have obtained for the eigenvectors paves
way to a general off-shell Bethe ansatz formulation, and c
sequently could be useful to produce integral representat
for the form factors@9#. Finally, we remark that all the mod
els solved in this work share a common algebraic structu
i.e., the braid-monoid algebra@18,19#. A question that
promptly arises is if there are direct connections between
braid-monoid algebra and our algebraic Bethe ansatz fra
work. In this sense, we note that the size~three! of the matrix
representation forT~l! coincides with the number of eigen
values of the braid operator@18#. The same observation als
works for the Hecke algebra, where the number of eigenv
ues is 2@18#. It remains to be seen whether this is an isola
coincidence or the tip of an iceberg.

This work was partially supported by CNPQ an
FAPESP.
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