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Unified algebraic Bethe ansatz for two-dimensional lattice models
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We develop a unified formulation of the quantum inverse scattering method for lattice vertex models
associated to the nonexception®), A ,, BY, ¢V, DY, andD{?), Lie algebras. We recast the
Yang-Baxter algebra in terms of different commutation relations between creation, annihilation, and diagonal
fields. The solution of th® (2, model is based on an interesting 16-vertex model, which is solvable without
recourse to a Bethe ansaf81063-651X99)07106-9

PACS numbegps): 05.50+q, 64.60.Cn, 75.10.Hk, 75.10.Jm

One of the main branches of theoretical and mathematicauxiliary space.A gives us the transfer matrixT(\)
physics is the theory of exactly solvable models. The most=Tr 4 7(\)]. A sufficient condition for integrability is the
successful approach to construct integrable two-dimensionaxistence of an invertible matriR(\,«) satisfying the fol-
lattice models of statistical mechanics is by solving the celdowing relation
ebrated Yang-Baxter equatidi]. Given a solution of this
equation, depending on a continuous paramkfesne can RN w) TN @T(p) = T(w) @TINR(N, ), 1)
define the local Boltzmann weights of a commuting family
of transfer matricesT(\). A complete understanding of Where the matrix elemenﬁfijﬁj(k,u) of the R matrix de-
these models should of course, include the exact diagonafined on the tensor spacé® A arec numbers. For the mod-
ization of the transfer matrices, which can provide us withels we are going to discuss in this paper, Renatrix de-
nonperturbative information about the on-shell physicalpends only on the difference of the rapiditiesind .
properties such as free-energy thermodynamics and quasipar- As a first step in this program, one may try to construct
ticle excitation behavior. from the intertwining relation(1) convenient commutation

The structure of the solutions of the Yang-Baxter equatiorrules for the matrix elements of the monodromy matrix,
based on simple Lie algebras is by now fairly well under-which in turn can inspire us about the physical content of
stood [2] In particu|ar, exp|icit expressions for the such elements. There is no known recipe to perform this
R-matrices related to nonexceptional affine Lie algebras wer€ask, but it certainly begins with an appropriate representa-
exhibited in Ref[3]. Since then, many othé® matrices as- tion for 7(\) itself. An importar_lt input is the reference state
sociated to higher dimensional representations of these alg) One uses to build up the eigenvectors of the transfer ma-
bras have also been determingl. A long-standing open trix T(\). If we choose|0) as th_e highest weight state for
problem in this field, except for thA$1) algebra[5], is the these algebras we soon realize, from the properties of
diagonalization of their transfer matrices by a first principleﬂ)‘)m)’ that a promising ansatz for the monodromy should

approach, i.e., through the quantum inverse scatteringe[ll]
method[6,7]. This technique gives us information on the

nature of the eigenvectors, which is crucial in the investiga- 13()‘) |A3()‘) f()‘)
tion of the off-shell properties such as correlators of physi- TN)=| C*(\) AN) B*(\) . (2
cally relevant operatorg8]. This fact becomes even more C(\) é(x) D(\)

clear thanks to new, recent developments in the calculation
of form-factors for integrable models in a finite lattic&10]. Here the vectoé(x) and the scalar fielé (1) will play

In this work, we offer the basic tools to solve the remain-t e role of creation operators with respect to the reference
ing vertex models based on the nonexceptional Lie algebra£1 P P

within the quantum inverse scattering framework. Specifi-State|0). The fieldB()) is a (q—2)-componentow vector,
cally, we present a universal formula for the eigenvectors ivhere g is the number of states per bond of these vertex

elements of the’\(zzr), A(er)ﬂ, le), CSl), D§1+)l, and D§2+)1 nonexceptional Lie algebra discussed in this paper is given in

models. This general construction extends previous work byable I. The operatoB*(\) represents d—2)-component
the author and Ramdd.1] and it is crucial in order to ac- Ccolumnvector operator, playing the role as a redundant cre-
commodate the solution of the twist&f2); model. It turns ation field, and therefore does not enter in our construction of
out that this solution still depends on the diagonalization of "€ eigenvectors. The scalar figli\), the column and row
16-vertex model having fine-tuned Boltzmann weights. IntervectorsC* (\) andC(\) are annihilation operatorgy(\) is
esting enough, this latter problem is resolved without rea (Q—2)X(gq—2) matrix operator, while the remaining
course to a lattice Bethe ansatz. fieldsB(A) andD(\) are diagonal scalar operators. Putting

One basic object in the quantum inverse scatteringhem together, we have a rather speaifi€ g matrix repre-
method is the monodromy operat@ii\) whose trace over an sentation for the monodromy matrix.
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TABLE I. Parameters of the vertex models associated with th&q, g ch multiparticle states. The fielﬁ:()\) plays the role of
afflne_Lle algebras. The symbols _IK and FZ stand for_lzergln-a single particle excitation, whilE(\) describes a pair ex-
Korepin[15] and Fateev-Zamolodchikov mod¢l], respectively.  qirasion hoth with bare momenta parametrizecd\b§urther-
more, the total number of particles is a conserved quantity

Lie algebra q P matrix thanks to an underlyingJ(1) invariance. Consequently,
AR 2r+1 19-vertex IK model I§()\1) will represent the one-particle state, the linear combi-
A andC  2r six-vertex model nation B(A1)®@B(\,) +5(A1,A2)F(\1) will be the two-
B 2r+1 19-vertex FZ model particle state for some unknown vectéf\,\,), and so
DY, 2r+2  two decoupled six-vertex models forth. Adapting the steps of Refl11] to include theD(?);
D@, 2r+2 16-vertex model structure, we find after a tedious computation that the

n-particle eigenvectof®,(\1,...,\,)) can be written by the

L o ) , linear combination
Taking into account this discussion and following the

steps of Ref[11] one can find the appropriate set of funda- |D (N gsee M) =P (N1s... Np) - F1O), (6)
mental commutation rules between the creation, annihilation,

and diagonal fields. However, in order to accommodate th
solution of theD{?), vertex model, we lead to generalized
expressions for the commutation rules as compared to tho
exhibited in Ref[11]. For the sake of simplicity we illustrate
these modifications only in the simplest case. This turns ou;f)
to be the commutation rule between the fieBE\) and

B(\), which is given by

Shere the —2)" components of the vectoF describe the

linear combination and the vectd}n()\l,...,)\n) satisfies the
§8IIowing recurrence relation:

A A =BA)®DP,_1(As,... \p)

) ] i =2 &0 I wiue=2)F ()
BOVB(w) =Wy (=N B()B(\) = 7(—N\)-BO\)B(). =2 K2kl

) ©Bp_p(Nzrer M j_ 1N j110e An)B(Y)
For theD,2+1 model (N, u) is the following matrix Bolt- j—1
zmann weight: anz Pk (A= Nj)- 7
in(X) 0 0 0
~ 0 Wy (X) w3+(x) 0 In this formula, the vectoE‘(x) plays the role of a gener-
7(x)= 0 Wi (X) Wy (x) 0 (4 alized exclusion principle, projecting out certain forbidden
0 0 0 Tw,(x) states that were made by the creation fielda;) from the

linear combination. This exclusion rule is governed by the
while for the other nonexceptional Lie algebras is just a scanon-null components of this vector, which have been deter-

lar %(x)=w,(x). The operatorl denotes the q/2—2)  mined in terms of the originaR-matrix elements by
X (g/2—2) identity matrix, and the expressions for the

. q-2 i+1j+1
weightsw;(x) are > Ry x)_
g I( ) g(x):-Zqu{ql—(x)ei@ej’ (8)
_explax)—k? hi= 1q
B kexp(ax) - 17" where@; denotes the elementary projection on tkie posi-
tion.
Wa(X) = 1-k? 5) The meaning of the auxiliariR-matrix f (x) in expression
2 Kexp(ax)— 1]’ (7) is that it dictates the symmetry of the eigenvectors under
permutation of rapidities, namely,
. k>—1
Wy ()= 2k[1*+expax/2)]’ Dp(Ngse e NN ja1seeNp)
where a=2 for the D?); model anda=1 for the other =®,(\q,. DT VIS W Y S0 WESD I I ()

nonexceptional Lie algebras listed in Table I. The parameter
k describes the “quantum” deformation as defined by Jimbo  As long asr > 2, the structure of the matrik(x) is based
[3]. We remark that many other commutation rules neecbn the same Lie algebra as the origifamatrix we started
similar modifications, but since they are sufficiently cumber-with, but now having a lower level rank— 1. This structure,
some we shall present these technical details elseWh&fe however, can change drastically when we reach the lowest
We next turn to the analysis of the structure of the eigenfevel, and for this reason it is convenient to call them sepa-
vectors. These are multiparticle states characterized by a sgitely by?(*)(x) matrices. In Table | we describe the type of
of rapidities that parametrize the creation fields, and can b@ertex models that are associated to th&de matrices for
written as linear combination of products of the operatorseach nonexceptional Lie algebra. We note that for most of
B(\) andF()\) acting on the reference stg@®. The follow-  the models the underlyintf?) matrices are based on the well
ing physical picture helps us to construct an educated ansaknown six- [13,6] and 19-vertex modeld14,15. The
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D®). model is, however, an exception, and its fundamentals also a restriction for factorization of tmematrix (14). This
#(1) matrix is given by a rather peculiar 16-vertex model.leads us to conclude that all the eigenvectors are given in

Since this result seems to be absent in the literature, we shafrms of products of on site states, and its expression in the
present here details about this theory, beginning with its maspin- o“ basis is

trix form
a,(xk) —bk —bk)  c(k) ) m 1
@ b(k) —c(k)  a_(x,k)  b(k) Fop= II ¢ Tk |, (16)
fo2(X)= g==1i=1 € oa—
D2 b(k) a_(x,k) —c(k) bk) | i 3.k
c(k) —b(k)  —b(k) a,(x,k)

(10

where the Boltzmann weights. (x,k), b(k), andc(k) are
given by

2b?(k)

fo(k)—f_(k)’
11

a.(x,k)=fL(k)+g(x), ck)=

This matrix is factorizable for arbitrary functiorfs, (k)
andg(x), but in the specific case of tz{%), model we have
the following extra constraints:

g(x)=sinh(x), f(k)=-f_(k),
(12)
f . (k)=c(k)*=(k—1/k)/2.

wheree;= + 1 areZ, variables, parametrizing the many pos-
sible (2)" states. The expression for the eigenstates of the
original 16-vertex model can be obtained from ELp) after
a transformation to the representation whefeis diagonal.
It is interesting to note that these are typical variational
states, with the advantage of being exact and valid for the
role spectrum.

Now the eigenvalues can be determined almost directly,
and they are given by

Ap2On{ih) = I [sinhOn— i) = ei(k=1K0/2]

m

+ ] [sinhy— ) + (k= 1K)12].

17

To make further progress for the algebraic Bethe ansatz

solution of theD(?), it is necessary to diagonalize the auxil-

iary transfer matrix associated to the)-matrix (10) in the

These latter results are fundamental in order to solve the
eigenvalue problem for th@ﬁ’1 from first principles. In

presence of inhomogeneities. More precisely, we have tparticular, the fact that the eigenvectors do not depend on the

tackle the following eigenvalue problem:
" Cia1sa dia o
r(l)()\_Ml)bidir(l)()\_ﬂz)bicz...r(l)

X (A= g ST = AN i PP, (13)

where{u;} stands for the inhomogeneities.

rapidities is an essential feature to match the inhomogeneous
eigenvalue and nested Bethe ansatz problems, sindé'the
matrix cannot be made regular. It should be also emphasized
that this theory is not in the class of the so-called free-
fermion models.

In summary, we have developed a framework that is ca-
pable of dealing with the transfer matrix eigenvalue problem
of the vertex models based on nonexceptional Lie algebras

We solve this problem by first mapping the 16-verteXgqm 4 ynified point of view. Our nested Bethe ansatz results

model to an asymmetric eight-vertex model, following a pro-¢,; the eigenvalues and Bethe ansatz equations corroborate
cedure devised long ago by WL6]. This leads us to a much those conjectured in Ref17] by means of analyticity as-

simpler vertex model, having the followirfg matrix:

ax) o 0  d.(k

" C(k) @ 0
awe| o BB D] s
d( O 0 A&®x)
where the respective weights are given by
A(x)=sinh(x), T(k)=f(k)—b*(k)/f,(k),
(15

Ao (K)=F ., (K) +b2(K)/f, (k)= 2b(K).

sumptions. The many technical details of such nested Bethe
ansatz analysis will be presented elsewh&g. The univer-

sal formula we have obtained for the eigenvectors paves the
way to a general off-shell Bethe ansatz formulation, and con-
sequently could be useful to produce integral representations
for the form factord9]. Finally, we remark that all the mod-
els solved in this work share a common algebraic structure,
i.e., the braid-monoid algebrfil8,19. A question that
promptly arises is if there are direct connections between the
braid-monoid algebra and our algebraic Bethe ansatz frame-
work. In this sense, we note that the sit&ree of the matrix
representation fo{\) coincides with the number of eigen-
values of the braid operatpt8]. The same observation also
works for the Hecke algebra, where the number of eigenval-

The Boltzmann weights of this eight-vertex model haveeg js 218]. It remains to be seen whether this is an isolated
enough special properties to allow us exact diagonalizatioRgincidence or the tip of an iceberg.

without the need of a Bethe ansatz analysis. In fact, the off-
diagonal matrix component of the corresponding Lax opera- This work was partially supported by CNPQ and

tor commutes due to the relation (k)d_ (k) =c?(k), which

FAPESP.
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